
Forecasting in factor augmented regressions under
structural change

by

Daniele Massacci and George Kapetaniosy

Granger Centre Discussion Paper No. 21/02



Forecasting in Factor Augmented Regressions under Structural

Change

Daniele Massacci�

King�s College London

George Kapetaniosy

King�s College London

October 28, 2021

Abstract

Factor augmented regressions are widely used to produce out-of-sample forecasts of macroeco-

nomic and �nancial time series. However, these series are subject to occasional breaks. We study the

e¤ect of neglected structural instability on the forecasts produced by factor augmented regressions

when the latent factors are estimated by cross-sectional averages from a large panel of variables. Our

results show that neglecting structural instability can be very costly in terms of forecasting perfor-

mance. We derive analytical results to show that both instability in the factor model and in the

forecasting equation have an impact on the produced forecasts. We further provide numerical results

showing that conditioning upon the most recent break tends to produce more accurate forecasts than

unconditional estimation methods based on expanding or rolling windows, although the actual gain

depends on the location and the magnitude of the breaks.
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1 Introduction

Factor augmented regressions are widely used to produce out-of-sample forecasts of macroeconomic and

�nancial time series. For a given target variable, they consist of a forecasting equation in which one or

more predictor is latent and it is estimated from a large panel of observable variables. Stock and Watson

(2002a), and Bai and Ng (2006), provide seminal methodological contributions when the latent factors

are estimated by asymptotic principal components, as studied in Bai and Ng (2002), and Bai (2003).

On the empirical side, Stock and Watson (2002b), and Forni et al. (2018), employ factor augmented

regressions to forecast macroeconomic variables; Ludvigson and Ng (2007), and Giovannelli et al. (2021),

consider stock returns; Ludvigson and Ng (2009) look at bond risk premia.

The aforementioned contributions work under the maintained assumption that both the factor model

and the forecasting equation are stable over time. However, the assumption of structural stability may

not be realistic in practice. Stock and Watson (1996) �nd instabilities in macroeconomic time series.

Pástor and Stambaugh (2001), and Timmermann (2001), show similar results for stock returns. Paye

and Timmermann (2006), and Rapach and Wohar (2006), employ the procedure developed in Bai and

Perron (1998), and document the presence of structural breaks in return prediction models. Timmermann

(2008) argues that structural breaks in the data generating process of stock returns generate "pockets"

of predictability, which are further analyzed in Farmer et al. (2021).

Given the existing evidence of breaks in the data generating process of macroeconomic and �nancial

time series, a large body of literature has addressed the problem of forecasting under structural breaks:

see Rossi (2021) for a general overview of the literature, and Timmermann (2018) for a speci�c focus on

�nancial asset returns. However, to the very best of our knowledge, all existing contributions assume

that the predictors of the target variable are either observable or, if latent, they are estimated from a

large panel of variables exhibiting a factor structure assumed to be stable over time. For example, in

the case of stock returns, observable predictors are provided in Welch and Goyal (2008), whereas Neely

et al. (2014), Baetje and Menkho¤ (2016), Çakmakli and van Dijk (2016), and Gonçalves et al. (2017),

study predictions based on latent factors under the maintained assumption that the underlying factor

model is not subject to structural instability. Within an in-sample framework, Corradi and Swanson

(2014), and Massacci (2019), study estimation and inference in factor augmented regressions in which

either the factor model or the forecasting equation (or both) are subject to breaks. However, to the very

best of our knowledge, the literature is silent regarding the consequence of structural instability on the

out-of-sample forecasting performance of factor augmented regressions.

This paper �lls a gap in the literature by studying the problem of out-of-sample forecasting in factor

augmented regressions when either the factor model or the forecasting equation (or both) are subject to

structural instability. In particular, we focus on the situation in which the information stemming from the

breaks is ignored and a misspeci�ed linear model is used. Following Giacomini and White (2006), we focus
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on the forecasting method, which includes the model itself, as well as other choices made by the forecaster,

such as the estimator for the model unknown parameters, and the related length of the estimation window.

In terms of estimation, we follow Pesaran (2006) and consider cross-sectional averages estimation for the

latent factors: this is appealing as it uses only the cross-sectional dimension, which is not a¤ected by the

break. In terms of estimation window, we ask ourselves whether we should use a conditional approach

based on post-break observations only, or an unconditional approach that implements an expanding

or a rolling window. The choice of the estimation window is addressed in Pesaran and Timmermann

(2004), who however do not include latent factors and only consider observable predictors. Our work

also complements Pesaran and Timmermann (2007), who study forecast combinations across estimation

windows as a tool to mitigate the e¤ect of structural instability on out-of-sample forecasts.

We study the simple yet informative set up of a factor augmented regression with a single latent

factor, and one break in the factor model and in the forecasting equation. We obtain two results. First,

we derive a closed form expression for the covariance between the realization and the forecast of the

variable of interest, and we show how this depends on the choice of the estimation window in relation

to the location of the breaks: in particular, when the estimation window begins after the break in the

factor model, this does not a¤ect the forecast; conversely, when the reverse occurs, the break in the factor

model has an impact on the produced forecast due to rotational indeterminacy typical of latent factor

models. Second, through a set of numerical results, we show that when the break in the factor model does

not have an impact on the produced forecast, the post-break estimation window is likely to outperform

the forecasts obtained by using the exponential and the rolling estimation windows. However, when the

break in the factor model a¤ects the produced forecast, the post-break estimation window may still have

an edge, but this may depend on the sign and the magnitude of the breaks.

The rest of the paper is organized as follows. Section 2 sets up the problem. Section 3 derives

analytical results that quantify the costs of ignoring breaks when using factor augmented regressions for

forecasting purposes. Section 4 provides numerical results. Finally, Section 5 concludes. Mathematical

proofs are provided in Appendix A.

2 Set up

We consider the model

xt = I
�
t � T 0x

�
�1ft + I

�
t > T 0x

�
�2ft + et; t = 1; : : : ; T; 1 < T 0x < T; (1)

yt+1 = I
�
t � T 0y

�
1ft + I

�
t > T 0y

�
2ft + "t+1; t = 1; : : : ; T; 1 < T 0y < T; (2)
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where I (�) is the indicator function and T denotes the time series dimension. Starting from (1), xt =

(x1t; : : : ; xNt)
0 2 RN is the N � 1 vector of observable dependent variables; ft is the latent factor

such that E (ft) = 0; et = (e1t; : : : ; eNt)
0 2 RN is the N � 1 vector of idiosyncratic components;

�jx = (�jx1; : : : ; �jxN )
0 is the N � 1 vector of factor loadings in state jx = 1; 2, whose i� th element is

�jxi, for i = 1; : : : ; N ; T
0
x is the break date in the data generating process of xt. Moving to (2), yt+1 2 R

is the dependent variable; ft is the same factor entering (1); "t+1 is the error term; jy is the slope

coe¢ cient associated to ft in state jy = 1; 2; T 0y is the break date, which is not constrained to be the

same as T 0x .

The model in (1) and (2) is a factor augmented regression with structural instability. For ease of

tractability, the model has one zero-mean factor and one break both in the factor model in (1) and in the

forecasting model in (2). Our aim is to out-of-sample forecast yT+1 given the information available at

time T when the breaks hit the data generating processes of xt and yt at T 0x and T
0
y , respectively, before

the forecast is made, so that T 0x < T and T 0y < T . In particular, we are interested in the situation in

which the two breaks occur close to the end of the sample and enough observations after the breaks are

not available to consistently estimate the model. Formally, this means that we study the case in which

the time dimension T is �xed and does not tend to in�nity.

It is customary in the literature to estimate linear factor augmented regressions using a two-step

procedure, which �rst estimates the latent factors from a large panel of variables by asymptotic principal

components, and then imputes the estimated factors into the forecasting model: see Bai and Ng (2006).

While this procedure is valid in a linear setting, it may encounter problems when the model faces

structural instability. In particular, asymptotic principal components estimation requires N;T ! 1 at

the same rate to achieve consistency (up to a rotation). Since T is �xed in our setting, the principal

components estimator for the factor ft in (1) would not in general be consistent. In order to overcome

this issue, we follow an alternative route and estimate ft using cross-sectional averages of the elements

of xt, as originally proposed in Pesaran (2006). Cross-sectional averaging is appealing in the kind of

problem we are facing since it only employs the cross-sectional dimension and thus require N !1 only

for consistency (up to a rotation), whereas the time series dimension T can be kept �xed.

3 Analytical results

To keep the analysis simple, we assume the number of latent factors (namely, one) in (1) is known.

Following Pesaran and Timmermann (2004), we assume that also T 0y in (2) is known. Further, in (2)

we let T ey be the pre-estimation window, with 1 � T ey � T 0y : the number of pre-break and post-break

observations is T 0y � T ey and T �
�
T 0y + 1

�
, respectively; the total number of observations to estimate

the model is T �
�
T ey + 1

�
. Speci�cation of the pre-estimation window T ey is required as the forecasting
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model in (2) is estimated along the time series dimension. On the other hand, we do not need to specify

a pre-estimation window for the factor model in (1) since the latent factor ft is estimated using the

cross-sectional averages estimator, which only requires N !1 to achieve consistency (up to a rotation).

In what follows, we assess the cost of ignoring the breaks occurring in T 0x and T
0
y along two com-

plementary perspectives, namely their e¤ect on the estimator for 2 in (2) and on the point forecast of

yT+1: these are covered in Sections 3.1 and 3.2, respectively.

3.1 Cross-sectional average estimation

Following Pesaran (2006), the cross-sectional average estimators f̂t for ft, and the least squares estimator

̂2
�
T ey
�
for 2, are

f̂t = �xwt =
NP
i=1

wixit; ̂2
�
T ey
�
=

�
T�1P
t=1

I
�
t > T ey

�
f̂tf̂t

��1 �T�1P
t=1

I
�
t > T ey

�
f̂tyt+1

�
; t = 1; : : : ; T; (3)

respectively, where fwigNi=1 is a sequence of weights. Let diag (�) denote a diagonal matrix of suitable

dimension. The following proposition characterizes the expected value of ̂2
�
T ey
�
as N !1.

Proposition 3.1 Given the model in (1) and (2), let et � IID
�
0; �2eIN

�
and (ft; "t+1)

0 � IIDN
h
0;diag

�
�2f ; �

2
"

�i
.

Consider ̂2
�
T ey
�
as de�ned in (3), where the sequence of weights fwigNi=1 satis�es wi = O

�
N�1� andPN

i=1 wi = 1. Let
PN

i=1 wi�jxi ! ��wjx 6= 0, for jx = 1; 2. Then

lim
N!1

E
�
̂2
�
T ey
��

=
2
��w2

8>><>>:
I
�
1 � T 0x � T ey

�
+I
�
T ey < T

0
x � T � 1

� "T � �T 0x + 1�
T �

�
T ey + 1

� + T 0x � T ey
T �

�
T ey + 1

� ��w2
��w1

#
9>>=>>;

+
1 � 2
��w2

8>>><>>>:
I
�
1 � T 0x � T ey

� T 0y � T ey
T �

�
T ey + 1

�
+I
�
T ey < T

0
x � T � 1

� "T 0y �min�T 0x ; T 0y 	
T �

�
T ey + 1

� +
min

�
T 0x ; T

0
y

	
� T ey

T �
�
T ey + 1

� ��2w
��w1

#
9>>>=>>>; :

Proposition 3.1 is informative about the asymptotic bias of ̂2
�
T ey
�
as N ! 1: this is consistent

with the analysis we are conducting, which assumes that the time series dimension T is �xed. The

stringent assumption on et is imposed for expositional purposes only: Proposition 3.1 would still hold

under suitable weaker conditions of time-series and cross-sectional dependence. In order to interpret

Proposition 3.1, we consider three mutually exclusive cases: (i) 1 � T 0x � T ey ; (ii) T ey < T 0x � T � 1 and

T 0x � T 0y ; (iii) T ey < T 0x � T � 1 and T 0x > T 0y .
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If 1 � T 0x � T ey the break in the factor model occurs before the beginning of the estimation window

in the forecasting equation and

lim
N!1

E
�
̂2
�
T ey
��
=

1
��w2

"
2 + (1 � 2)

T 0y � T ey
T �

�
T ey + 1

�# : (4)

Since the factor ft in (1) is only identi�ed up to a rotation, for 1 = 2, namely when the forecasting

equation in (2) is not subject to structural instability, the right-hand side of (4) is equal to the rotation

of 2 induced by ��
�1
w2 (namely, ��

�1
w22). For 1 6= 2, the asymptotic bias of ̂2

�
T ey
�
depends on the

magnitude of the break, as measured by j1 � 2j, and by the ratio between the number of pre-break

observations
�
T 0y � T ey

�
and the size of the estimation window

�
T �

�
T ey + 1

��
. Notice that if ft was

observable and did not have to be estimated, then ̂2
�
T ey
�
and limN!1 E

�
̂2
�
T ey
��
in (3) and (4),

respectively, would simplify to

̂2
�
T ey
�
=

�
T�1P
t=1

I
�
t > T ey

�
ftft

��1 � T�1P
t=T�1

I
�
t > T ey

�
ftyt+1

�

and

E
�
̂2
�
T ey
��
= 2 + (1 � 2)

T 0y � T ey
T �

�
T ey + 1

� ; (5)

respectively, where the analytical expression for E
�
̂2
�
T ey
��
in (5) is identical to the analogous result in

Pesaran and Timmermann (2004).1

If T ey < T 0x � T � 1 and T 0x � T 0y then T
e
y < T 0x � T 0y � T � 1: the estimation window begins

before the break in the factor model, which precedes the break in the forecasting equation. The result

in Proposition 3.1 simpli�es to

lim
N!1

E
�
̂2
�
T ey
��

=
2
��w2

"
T �

�
T 0x + 1

�
T �

�
T ey + 1

� + T 0x � T ey
T �

�
T ey + 1

� ��w2
��w1

#

+
1 � 2
��w2

"
T 0y � T 0x

T �
�
T ey + 1

� + T 0x � T ey
T �

�
T ey + 1

� ��w2
��w1

#
:

(6)

In the absence of a break in the forecasting model (i.e., 1 = 2) the result in (6) reduces to

lim
N!1

E
�
̂2
�
T ey
��
=

2
��w2

"
T �

�
T 0x + 1

�
T �

�
T ey + 1

� + T 0x � T ey
T �

�
T ey + 1

� ��w2
��w1

#
;

and the rotation induced around 2 depends on the frequency of observations of xt before and after the

break date T 0x , as given by
�
T �

�
T 0x + 1

�� ��
T �

�
T ey + 1

��
and

�
T 0x � T ey

� ��
T �

�
T ey + 1

��
, respectively,

and it is captured by ��w2
�
��w1 : when ��w1 = ��w2, then limN!1 E

�
̂2
�
T ey
��
= 2

�
��w2 , which is the

same it would be if there was no break in the factor model.
1See the Proof of Proposition 1 in Appendix A in Pesaran and Timmermann (2004).
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Finally, if T ey < T
0
x � T � 1 and T 0x > T 0y then T ey � T 0y < T 0x � T � 1: the estimation window starts

before the break in the forecasting model, which happens before the break in the factor model. The

result stated in Proposition 3.1 simpli�es to

lim
N!1

E
�
̂2
�
T ey
��
=

2
��w2

"
T �

�
T 0x + 1

�
T �

�
T ey + 1

� + T 0x � T ey
T �

�
T ey + 1

� ��w2
��w1

#
+
1 � 2
��w2

"
T 0y � T ey

T �
�
T ey + 1

� ��w2
��w1

#
; (7)

and considerations analogous to those made in the previous case apply.

In conclusion, according to Proposition 3.1, limN!1 E
�
̂2
�
T ey
��
depends on the magnitude of the

break in the forecasting equation as measured by j1 � 2j. An additional source of bias is due to ft

being latent, so that it has to be estimated from a large panel of variables that exhibit a factor structure.

This extra source of bias persists even if the forecasting equation does not experience a break and follows

from rotational indeterminacy typical of latent factor models: in particular, this bias depends on the

relative position of T 0x , T
0
y and T

e
y . Interestingly, rotational indeterminacy produces biases ̂2

�
T ey
�
only

if ��w1 6= ��w2.

3.2 Point forecasts

Given the regression model in (2), the forecast of yT+1 at time T is ŷT+1
�
T ey
�
= ̂2

�
T ey
�
f̂T , where ̂2

�
T ey
�

and f̂T are de�ned in (3). Under the assumptions of Proposition 3.1, E (yT+1) = limN!1 E
�
ŷT+1

�
T ey
��
=

0.2 We thus assess the e¤ect induced by structural instability on ŷT+1
�
T ey
�
through the covariance be-

tween yT+1 and ŷT+1
�
T ey
�
.

Proposition 3.2 Given the model in (1) and (2), let the assumptions of Proposition 3.1 hold. Then

lim
N!1

E
�
yT+1ŷT+1

�
T ey
��
= 2�

2
f
��w2

n
lim
N!1

E
�
̂2
�
T ey
��o

;

where limN!1 E
�
̂2
�
T ey
��
is given in Proposition 3.1.

Proposition 3.2 derives the analytical expression for the asymptotic covariance between yT+1 and

its forecast ŷT+1
�
T ey
�
as N ! 1. As in the case of Proposition 3.1, we interpret Proposition 3.2 by

considering the same mutually exclusive cases, namely: (i) 1 � T 0x � T ey ; (ii) T
e
y < T 0x � T � 1 and

T 0x � T 0y ; (iii) T ey < T 0x � T � 1 and T 0x > T 0y .

When 1 � T 0x � T ey , taking into account (4), Proposition 3.2 simpli�es to

lim
N!1

E
�
yT+1ŷT+1

�
T ey
��
= 2�

2
f

"
2 + (1 � 2)

T 0y � T ey
T �

�
T ey + 1

�# ;
2Under the assumptions of Proposition 3.1, ̂2

�
T ey
�
and f̂T are independent random variables and

lim
N!1

E
�
f̂T

�
= lim
N!1

E

 
NP
i=1

wixiT

!
= 0:
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which is identical to the homologous �nding stated in Proposition 1 in Pesaran and Timmermann (2004).

Unlike the result in (4), in this case the asymptotic (as N !1) covariance between yT+1 and ŷT+1
�
T ey
�

does not su¤er from the rotational indeterminacy problem induced by the latent factor model.

When T ey < T
0
x � T � 1 and T 0x � T 0y , from (6) the result in Proposition 3.2 becomes

lim
N!1

E
�
yT+1ŷT+1

�
T ey
��
= 2�

2
f

8>>>><>>>>:
2

"
T �

�
T 0x + 1

�
T �

�
T ey + 1

� + T 0x � T ey
T �

�
T ey + 1

� ��w2
��w1

#

+(1 � 2)
"

T 0y � T 0x
T �

�
T ey + 1

� + T 0x � T ey
T �

�
T ey + 1

� ��w2
��w1

#
9>>>>=>>>>; :

In this case, the source of dependence between yT+1 and ŷT+1
�
T ey
�
induced by ��w2

�
��w1 arises. The

ratio ��w2
�
��w1 plays a role because T ey < T 0x � T � 1, namely because the break in the factor model

occurs after the beginning of the estimation window, and the e¤ects induced by rotational indeterminacy

before and after the break do not cancel each other out (unless ��w1 = ��w2).

Finally, for T ey < T
0
x � T � 1 and T 0x > T 0y , from (7) the result in Proposition 3.2 simpli�es to

lim
N!1

E
�
yT+1ŷT+1

�
T ey
��
= 2�

2
f

(
2

"
T �

�
T 0x + 1

�
T �

�
T ey + 1

� + T 0x � T ey
T �

�
T ey + 1

� ��w2
��w1

#
+ (1 � 2)

"
T 0y � T ey

T �
�
T ey + 1

� ��w2
��w1

#)
;

and a component in the comovement between yT+1 and ŷT+1
�
T ey
�
driven by ��w2

�
��w1 still persists.

In conclusion, the comovement between yT+1 and ŷT+1
�
T ey
�
, as measured by their asymptotic co-

variance as N !1, depends on the magnitude of the break as captured by j1 � 2j. When the break

in the factor model occurs after the beginning of the estimation window in the forecasting model, the

comovement between yT+1 and ŷT+1
�
T ey
�
also depends upon the ratio ��w2

�
��w1 , which is induced by

rotational indeterminacy since the estimator f̂t for ft in general experiences di¤erent rotations around

ft because of the structural break in the factor model.

4 Numerical results

4.1 Data generating process

We consider the data generating process

xsit = I
�
t � T 0x

�
�1if

s
t + I

�
t > T 0x

�
�2if

s
t + e

s
it; i = 1; : : : ; N; t = 1; : : : ; T;

where s denotes the replication, for s = 1; : : : ; 2000. We consider N = 100 and T = 201, so that

T � 1 = 200. De�ne �xi = �1i � �2i, for i = 1; : : : ; N . We �x �1i and �2i, and thus �xi, throughout

the replications. We generate �2i � N (1; 1), and de�ne �1i = �2i + �xi. We control for the magnitude

of the break by implementing the following scenarios: in Experiment 1 we set �xi = 0:00; 1:50; 3:00 for
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i = 1; : : : ; N /2 , and correspondingly �xi = 0:00;�1:50;�3:00 for i = N /2 + 1; : : : ; N ; in Experiment

2a we look at �xi = �x = 0:00; 1:50; 3:00; in Experiment 2b we consider �xi = �x = 0:00;�1:50;�3:00.

Experiment 1 implies that the condition ��w2
�
��w1 = 1 in Proposition 3.2 is met and the break in the

factor model should not a¤ect the produced forecasts. Experiment 2a and Experiment 2b imply that

0 < ��w2
�
��w1 � 1 in Proposition 3.2 and thus allow to assess the impact of the break in the factor model

on the forecasts. We further control for the break date by setting T 0x = 100; 190. The factor is generated

as fst � IIDN (0; 1). The idiosyncratic components are generated as esit = �
1/2
ii �se;it, with �ii � �2 (1)

and �se;it � IIDN (0; 1), with �ii �xed throughout the replications.

The data generating process for the target variable is

yst+1 = I
�
t � T 0y

�
1f

s
t + I

�
t > T 0y

�
2f

s
t + "

s
t+1; t = 1; : : : ; T:

The slope coe¢ cients 1 and 2 are �xed throughout the replications, with 2 = 1 and 1 = 2 + �y.

We control for the magnitude of the break by setting �y = 0:00; 1:00; 2:00; 3:00, and for the location of

the break by �xing T 0y = 100; 190. The error term "st+1 is generated as "
s
t+1 � IIDN (0; 1).

We consider three estimation windows: post-break, with T ey = T
0
y ; expanding, with T

e
y = 0; rolling,

with T ey = T � 1 � w and w = 50, so that T ey = 150. From the discussion in Section 3.2, a necessary

condition for ��w2
�
��w1 to have an e¤ect on the produced forecast is that T ey < T

0
x � T � 1. Given our

data generating process, ��w2
�
��w1 will always impact the forecast in the case of the expanding estimation

window, provided that ��w2
�
��w1 6= 1. In the case of post-break and rolling estimation windows, the

e¤ect induced by ��w2
�
��w1 depends on the position of T ey relative to T

0
x . Also, since we keep �2i and 2

constant, for i = 1; : : : ; N , the forecasts produced using the post-break window are independent of the

break size in both the factor model and in the factor augmented regression for T 0y � T 0x .

We evaluate the produced forecasts in terms of the root mean squared forecast error de�ned as

RMSFEk =

PS
s=1

h
ysT+1 � ŷsk;T+1

�
T ey
�i2

S
; k = post-break; expanding; rolling;

(8)

where ŷsk;T+1
�
T ey
�
is the forecast made by method k within replication s.

4.2 Results

Table 1 about here

The results from Experiment 1 and collected in Table 1 are consistent with Proposition 3.2. When

��w2
�
��w1 = 1, the produced forecast is independent of the size of the break in the factor model as

measured by j�xj. As expected, when �y = 0 the expanding window always produces the most accurate

forecasts, since it correctly uses all available information. As �y increases, the post-break estimation
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window takes the lead, whereas the expanding window becomes the worst performer, as it is the method

that employs the highest amount of wrong information stemming from the observations before the break.

Notice that all forecasts deteriorate as T 0y increases from T 0y = 100 to T
0
y = 190, since fewer observations

become available in the post-break window, and the expanding and rolling windows use more pre-break

observations to estimate the forecasting model.

Table 2a and 2b about here

Table 2a and Table 2b collect results from Experiments 2a and 2b, respectively, and show a di¤erent

picture compared to Table 1. In both cases, the magnitude of the ratio ��w2
�
��w1 declines in �x and

the estimator for the factor before the break becomes less precise due to the increased bias induced by

rotational indeterminacy. In some cases the conclusions drawn from Experiment 1 are reversed. When

�y > 0 and �x > 0, the post-break estimation window is often dominated by the expanding window (see

Table 2a). However, this is not the case for �x < 0, when in some instances the rolling window produces

the most accurate forecasts (see Table 2b). Therefore, when 0 < ��w2
�
��w1 < 1, the post-break window

still has an overall edge with respect to expanding and rolling window estimation methods, although the

actual performance needs to be evaluated on a case-by-case basis. In particular, the advantage in terms

of forecasting performance the post-break window has when ��w2
�
��w1 = 1 no longer uniformly holds

when ��w2
�
��w1 6= 1, in which case the relative performance of the estimation window depends on the

interaction between the breaks in the forecasting equation and in the factor model.

5 Conclusions

This paper studies out-of-sample forecasting in factor augmented regressions that experience structural

instability in the factor model or in the forecasting regression (or both) when the latent factors are

estimated by cross-sectional averages and the instability is neglected. We show that a post-break esti-

mation window tends to produce more accurate forecasts than the expanding or the rolling estimation

windows, although the actual relative precision depends on the position and the magnitude of the breaks

in the factor model and in the forecasting equation. This poses challenges as to how optimally select the

estimation window in the forecasting model.

Our work can be extended along several dimensions. We speci�cally focus on the case in which

the forecasting equation has one latent factor and does not include any observable predictor: the more

general case with multiple latent factors and observable predictors is an extension worth considering.

Also, we estimated the latent factor by cross-sectional averages: it would be interesting to compare this

with the asymptotic principal components estimator commonly used in factor augmented regressions.

Finally, this paper uses an approach based on unsupervised learning and a comparison with a supervised

10



counterpart in the spirit of Bair et al. (2006) is worth considering. All these extensions will be conducted

in future research.

A Appendix

Proof of Proposition 3.1. As N !1,

f̂t = I
�
t � T 0x

� NP
i=1

wi�1i

!
ft + I

�
t > T 0x

� NP
i=1

wi�2i

!
ft +

 
NP
i=1

wieit

!
p! I

�
t � T 0x

�
��w1ft + I

�
t > T 0x

�
��w2ft :

it follows that as N !1

̂2
�
T ey
�

p!
(
T�1P
t=1

I
�
t > T ey

� �
I
�
t � T 0x

�
��w1ft + I

�
t > T 0x

�
��w2ft

� �
I
�
t � T 0x

�
��w1ft + I

�
t > T 0x

�
��w2ft

�)�1
�
(
T�1P
t=1

I
�
t > T ey

� �
I
�
t � T 0x

�
��w1ft + I

�
t > T 0x

�
��w2ft

� �
I
�
t � T 0y

�
1ft + I

�
t > T 0y

�
2ft + "t+1

�)

=

(
T�1P
t=1

I
�
t > T ey

� �
I
�
t � T 0x

�
��w1��w1ftft + I

�
t > T 0x

�
��w2��w2ftft

�)�1

�

8<:T�1P
t=1

I
�
t > T ey

�24 I
�
t � T 0x

�
I
�
t � T 0y

�
��w1ft1ft + I

�
t � T 0x

�
I
�
t > T 0y

�
��w1ft2ft + I

�
t � T 0x

�
��w1ft"t+1

+I
�
t > T 0x

�
I
�
t � T 0y

�
��w2ft1ft + I

�
t > T 0x

�
I
�
t > T 0y

�
��w2ft2ft + I

�
t > T 0x

�
��w2ft"t+1

359=;
= I

�
T 0x � T ey

� "T�1P
t=1

I
�
t > T ey

�
I
�
t > T 0x

�
��w2ftft

#�1
�
(
T�1P
t=1

I
�
t > T ey

�
I
�
t > T 0x

� �
I
�
t � T 0y

�
1ftft + I

�
t > T 0y

�
2ftft + ft"t+1

�)

+I
�
T 0x > T

e
y

� T 0x � T ey
T �

�
T ey + 1

� "T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0x

�
��w1ftft

#�1
�
(
T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0x

� �
I
�
t � T 0y

�
1ftft + I

�
t > T 0y

�
2ftft + ft"t+1

�)

+I
�
T 0x > T

e
y

� T � �T 0x + 1�
T �

�
T ey + 1

� "T�1P
t=1

I
�
t > T ey

�
I
�
t > T 0x

�
��w2ftft

#�1
�
(
T�1P
t=1

I
�
t > T ey

�
I
�
t > T 0x

� �
I
�
t � T 0y

�
1ftft + I

�
t > T 0y

�
2ftft + ft"t+1

�)
;
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and since I
�
t > T 0y

�
= 1� I

�
t � T 0y

�
, as N !1

̂2
�
T ey
�

p! I
�
T 0x � T ey

� "T�1P
t=1

I
�
t > T ey

�
I
�
t > T 0x

�
ftft

#�1
�
(
T�1P
t=1

I
�
t > T ey

�
I
�
t > T 0x

� �
I
�
t � T 0y

� 1
��w2

ftft + I
�
t > T 0y

� 2
��w2

ftft +
1
��w2

ft"t+1

�)

+I
�
T 0x > T

e
y

� T 0x � T ey
T �

�
T ey + 1

� "T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0x

�
ftft

#�1
�
(
T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0x

� �
I
�
t � T 0y

� 1
��w1

ftft + I
�
t > T 0y

� 2
��w1

ftft +
1
��w1

ft"t+1

�)

+I
�
T 0x > T

e
y

� T � �T 0x + 1�
T �

�
T ey + 1

� "T�1P
t=1

I
�
t > T ey

�
I
�
t > T 0x

�
ftft

#�1
�
(
T�1P
t=1

I
�
t > T ey

�
I
�
t > T 0x

� �
I
�
t � T 0y

� 1
��w2

ftft + I
�
t > T 0y

� 2
��w2

ftft +
1
��w2

ft"t+1

�)
= I

�
T 0x � T ey

� 2
��w2

+I
�
T 0x � T ey

� 1 � 2
��w2

"
T�1P
t=1

I
�
t > T ey

�
ftft

#�1 "
T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0y

�
ftft

#

+I
�
T 0x � T ey

� 1
��w2

"
T�1P
t=1

I
�
t > T ey

�
ftft

#�1 "
T�1P
t=1

I
�
t > T ey

�
ft"t

#
+I
�
T 0x > T

e
y

� 2
��w1

T 0x � T ey
T �

�
T ey + 1

�
+I
�
T 0x > T

e
y

� 1 � 2
��w1

T 0x � T ey
T �

�
T ey + 1

� "T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0x

�
ftft

#�1 "
T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0x

�
I
�
t � T 0y

�
ftft

#

+I
�
T 0x > T

e
y

� 1
��w1

T 0x � T ey
T �

�
T ey + 1

� "T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0x

�
ftft

#�1 "
T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0x

�
ft"t

#
+I
�
T 0x > T

e
y

� 2
��w2

T �
�
T 0x + 1

�
T �

�
T ey + 1

�
+I
�
T 0x > T

e
y

� 1 � 2
��w1

T �
�
T 0x + 1

�
T �

�
T ey + 1

� �I �t > T 0x� ftft��1
"
T�1P
t=1

I
�
t > T 0x

�
I
�
t � T 0y

�
ftft

#

+I
�
T 0x > T

e
y

� 1
��w2

T �
�
T 0x + 1

�
T �

�
T ey + 1

� "T�1P
t=1

I
�
t > T 0x

�
ftft

#�1 "
T�1P
t=1

I
�
t > T 0x

�
ft"t

#
:

Simplifying terms, we get that as N !1

̂2
�
T ey
�

p! 2
��w2

T �
�
max

�
T 0x ; T

e
y

	
+ 1
�

T �
�
T ey + 1

� + I
�
T 0x > T

e
y

� 2
��w1

T 0x � T ey
T �

�
T ey + 1

�
+
1 � 2
��w2

T �
�
max

�
T 0x ; T

e
y

	
+ 1
�

T �
�
T ey + 1

� "
T�1P
t=1

I
�
t > max

�
T 0x ; T

e
y

	�
ftft

#�1 "
T�1P
t=1

I
�
t > max

�
T 0x ; T

e
y

	�
I
�
t � T 0y

�
ftft

#

+I
�
T 0x > T

e
y

� 1 � 2
��w1

T 0x � T ey
T �

�
T ey + 1

� "T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0x

�
ftft

#�1 "
T�1P
t=1

I
�
t > T ey

�
I
�
t � min

�
T 0x ; T

0
y

	�
ftft

#

+
1
��w2

T �
�
max

�
T 0x ; T

e
y

	
+ 1
�

T �
�
T ey + 1

� "
T�1P
t=1

I
�
t > max

�
T 0x ; T

e
y

	�
ftft

#�1 "
T�1P
t=1

I
�
t > max

�
T 0x ; T

e
y

	�
ft"t+1

#

+I
�
T 0x > T

e
y

� 1
��w1

T 0x � T ey
T �

�
T ey + 1

� "T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0x

�
ftft

#�1 "
T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0x

�
ft"t+1

#
:

It follows that

E
�
̂2
�
T ey
��

! 2
��w2

T �
�
max

�
T 0x ; T

e
y

	
+ 1
�

T �
�
T ey + 1

� + I
�
T 0x > T

e
y

� 2
��w1

T 0x � T ey
T �

�
T ey + 1

�
+
1 � 2
��w2

T �
�
max

�
T 0x ; T

e
y

	
+ 1
�

T �
�
T ey + 1

� E

8<:
"
T�1P
t=1

I
�
t > max

�
T 0x ; T

e
y

	�
ftft

#�1 "
T�1P
t=1

I
�
t > max

�
T 0x ; T

e
y

	�
I
�
t � T 0y

�
ftft

#9=;
+I
�
T 0x > T

e
y

� 1 � 2
��w1

T 0x � T ey
T �

�
T ey + 1

�E
8<:
"
T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0x

�
ftft

#�1 "
T�1P
t=1

I
�
t > T ey

�
I
�
t � min

�
T 0x ; T

0
y

	�
ftft

#9=; :
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For 1 � T 0x � T ey , using the same results employed on pp. 421 � 422 in the Proof of Proposition 1 of Pesaran and

Timmermann (2004),

lim
N!1

E
�
̂2
�
T ey
��

=
2
��w2

T �
�
T ey + 1

�
T �

�
T ey + 1

� + 1 � 2
��w2

T � 1�
�
T ey + 1

�
� 1

T � 1�
�
T ey + 1

�
� 1

E

8<:
"
T�1P
t=1

I
�
t > T ey

�
ftft

#�1 "
T�1P
t=1

I
�
t > T ey

�
I
�
t � T 0y

�
ftft

#9=;
=

1
��w2

"
2 + (1 � 2)

T 0y � T ey
T �

�
T ey + 1

�# ;
which gives (4). Following analogous arguments, for T ey < T

0
x < T

0
y ,

lim
N!1

E
�
̂2
�
T ey
��

=

"
2
��w2

T �
�
T 0x + 1

�
T �

�
T ey + 1

� + 2
��w1

T 0x � T ey
T �

�
T ey + 1

�#

+

"
1 � 2
��w2

T �
�
T 0x + 1

�
T �

�
T ey + 1

� T 0y � T 0x
T � (T 0x + 1)

+
1 � 2
��w1

T 0x � T ey
T �

�
T ey + 1

�#

=
2
��w2

"
T �

�
T 0x + 1

�
T �

�
T ey + 1

� + T 0x � T ey
T �

�
T ey + 1

� ��w2
��w1

#
+
1 � 2
��w2

"
T 0y � T 0x

T �
�
T ey + 1

� + T 0x � T ey
T �

�
T ey + 1

� ��w2
��w1

#
;

which is equal to (6). Finally, for T 0y � T 0x � T � 1,

lim
N!1

E
�
̂2
�
T ey
��

=
2
��w2

"
T �

�
T 0x + 1

�
T �

�
T ey + 1

� + T 0x � T ey
T �

�
T ey + 1

� ��w2
��w1

#
+
1 � 2
��1w

T 0x � T ey
T �

�
T ey + 1

� T 0y � �T ey + 1�+ 1
T 0x �

�
T ey + 1

�
+ 1

=
2
��w2

"
T �

�
T 0x + 1

�
T �

�
T ey + 1

� + T 0x � T ey
T �

�
T ey + 1

� ��w2
��w1

#
+
1 � 2
��w2

"
T 0y � T ey

T �
�
T ey + 1

� ��w2
��w1

#
;

which gives (7). The result stated in Proposition 3.1 then follows.

Proof of Proposition 3.2. Consider

lim
N!1

E
�
yT+1; ŷT+1

�
T ey
��

= lim
N!1

E
h
(2fT + "T+1) ̂2

�
T ey
�
f̂T

i
= lim

N!1
E
h
2fT f̂T ̂2

�
T ey
�i

= lim
N!1

E

(
2fT

"
NP
i=1

wi (�2ifT + eit)

#
̂2
�
T ey
�)

= 2E
�
f2T
�
lim

N!1

 
NP
i=1

wi�2i

!
lim

N!1
E
�
̂2
�
T ey
��

= 2�
2
f
��w2 lim

N!1
E
�
̂2
�
T ey
��
;

which completes the proof of Proposition 3.2.
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Table 1: Experiment 1, RMSFE, ��w2
�
��w1 = 1

Panel A: T 0y = 100
T 0x = 100 T 0x = 190

Post-break Expanding Rolling Post-break Expanding Rolling
�y j�xj

0.00 1.0614 1.0560 1.0796 1.0614 1.0560 1.0796
0.00 1.50 1.0614 1.0560 1.0796 1.0614 1.0560 1.0796

3.00 1.0614 1.0560 1.0796 1.0614 1.0560 1.0796
0.00 1.0614 1.2858 1.0796 1.0614 1.2858 1.0796

1.00 1.50 1.0614 1.2858 1.0796 1.0614 1.2858 1.0796
3.00 1.0614 1.2858 1.0796 1.0614 1.2858 1.0796
0.00 1.0614 2.0268 1.0796 1.0614 2.0268 1.0796

2.00 1.50 1.0614 2.0268 1.0796 1.0614 2.0268 1.0796
3.00 1.0614 2.0268 1.0796 1.0614 2.0268 1.0796
0.00 1.0614 3.2791 1.0796 1.0614 3.2791 1.0796

3.00 1.50 1.0614 3.2791 1.0796 1.0614 3.2791 1.0796
3.00 1.0614 3.2791 1.0796 1.0614 3.2791 1.0796

Panel B: T 0y = 190
T 0x = 100 T 0x = 190

Post-break Expanding Rolling Post-break Expanding Rolling
�y j�xj

0.00 1.2193 1.0560 1.0796 1.2193 1.0560 1.0796
0.00 1.50 1.2193 1.0560 1.0796 1.2193 1.0560 1.0796

3.00 1.2193 1.0560 1.0796 1.2193 1.0560 1.0796
0.00 1.2193 1.9312 1.7342 1.2193 1.9312 1.7342

1.00 1.50 1.2193 1.9312 1.7342 1.2193 1.9312 1.7342
3.00 1.2193 1.9312 1.7342 1.2193 1.9312 1.7342
0.00 1.2193 4.6567 3.7817 1.2193 4.6567 3.7817

2.00 1.50 1.2193 4.6567 3.7817 1.2193 4.6567 3.7817
3.00 1.2193 4.6567 3.7817 1.2193 4.6567 3.7817
0.00 1.2193 9.2327 7.2220 1.2193 9.2327 7.2220

3.00 1.50 1.2193 9.2327 7.2220 1.2193 9.2327 7.2220
3.00 1.2193 9.2327 7.2220 1.2193 9.2327 7.2220

This table displays the RMSFE as de�ned in (8) for Experiment 1, whose data generating process and results are described
in Section 4.1 and in Section 4.2, respectively.
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Table 2a: Experiment 2a, RMSFE, 0 < ��w2
�
��w1 < 1, �x = 0:00; 1:50; 3:00

Panel A: T 0y = 100
T 0x = 100 T 0x = 190

Post-break Expanding Rolling Post-break Expanding Rolling
�y �x

0.00 1.0614 1.0560 1.0796 1.0614 1.0560 1.0796
0.00 1.50 1.0614 1.3194 1.0796 1.4061 1.4108 1.3963

3.00 1.0614 1.5550 1.0796 1.6190 1.6222 1.6111
0.00 1.0614 1.2858 1.0796 1.0614 1.2858 1.0796

1.00 1.50 1.0614 1.0746 1.0796 1.4061 1.1957 1.3963
3.00 1.0614 1.2625 1.0796 1.6190 1.4313 1.6111
0.00 1.0614 2.0268 1.0796 1.0614 2.0268 1.0796

2.00 1.50 1.0614 1.0857 1.0796 1.4061 1.0766 1.3963
3.00 1.0614 1.0930 1.0796 1.6190 1.2790 1.6111
0.00 1.0614 3.2791 1.0796 1.0614 3.2791 1.0796

3.00 1.50 1.0614 1.3526 1.0796 1.4061 1.0536 1.3963
3.00 1.0614 1.0467 1.0796 1.6190 1.1655 1.6111

Panel B: T 0y = 190
T 0x = 100 T 0x = 190

Post-break Expanding Rolling Post-break Expanding Rolling
�y �x

0.00 1.2193 1.0560 1.0796 1.2193 1.0560 1.0796
0.00 1.50 1.2193 1.3194 1.0796 1.2193 1.4108 1.3963

3.00 1.2193 1.5550 1.0796 1.2193 1.6222 1.6111
0.00 1.2193 1.9312 1.7342 1.2193 1.9312 1.7342

1.00 1.50 1.2193 1.0492 1.7342 1.2193 1.0814 1.0860
3.00 1.2193 1.2102 1.7342 1.2193 1.2901 1.2871
0.00 1.2193 4.6567 3.7817 1.2193 4.6567 3.7817

2.00 1.50 1.2193 1.2689 3.7817 1.2193 1.0998 1.1040
3.00 1.2193 1.0556 3.7817 1.2193 1.1883 1.1886
0.00 1.2193 9.2327 7.2220 1.2193 9.2327 7.2220

3.00 1.50 1.2193 1.9784 7.2220 1.2193 1.4660 1.4504
3.00 1.2193 1.0913 7.2220 1.2193 1.0461 1.0497

This table displays the RMSFE as de�ned in (8) for Experiment 2a, whose data generating process and results are described
in Section 4.1 and in Section 4.2, respectively.
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Table 2b: Experiment 2b, RMSFE, 0 < ��w2
�
��w1 < 1, �x = 0:00;�1:50;�3:00

Panel A: T 0y = 100
T 0x = 100 T 0x = 190

Post-break Expanding Rolling Post-break Expanding Rolling
�y �x

0.00 1.0614 1.0560 1.0796 1.0614 1.0560 1.0796
0.00 -1.50 1.0614 1.3413 1.0796 6.1589 8.4087 3.9456

-3.00 1.0614 2.5212 1.0796 3.3949 3.4676 3.2516
0.00 1.0614 1.2858 1.0796 1.0614 1.2858 1.0796

1.00 -1.50 1.0614 1.8546 1.0796 6.1589 14.7800 3.9456
-3.00 1.0614 3.7394 1.0796 3.3949 4.4453 3.2516
0.00 1.0614 2.0268 1.0796 1.0614 2.0268 1.0796

2.00 -1.50 1.0614 2.6258 1.0796 6.1589 23.1370 3.9456
-3.00 1.0614 5.3211 1.0796 3.3949 5.5895 3.2516
0.00 1.0614 3.2791 1.0796 1.0614 3.2791 1.0796

3.00 -1.50 1.0614 3.6550 1.0796 6.1589 33.4810 3.9456
-3.00 1.0614 7.2664 1.0796 3.3949 6.9002 3.2516

Panel B: T 0y = 190
T 0x = 100 T 0x = 190

Post-break Expanding Rolling Post-break Expanding Rolling
�y �x

0.00 1.2193 1.0560 1.0796 1.2193 1.0560 1.0796
0.00 -1.50 1.2193 1.3413 1.0796 1.2193 8.4087 3.9456

-3.00 1.2193 2.5212 1.0796 1.2193 3.4676 3.2516
0.00 1.2193 1.9312 1.7342 1.2193 1.9312 1.7342

1.00 -1.50 1.2193 1.0960 1.7342 1.2193 22.308 9.2407
-3.00 1.2193 3.0835 1.7342 1.2193 5.4797 5.0765
0.00 1.2193 4.6567 3.7817 1.2193 4.6567 3.7817

2.00 -1.50 1.2193 1.2314 3.7817 1.2193 43.416 17.260
-3.00 1.2193 3.7398 3.7817 1.2193 8.0949 7.4469
0.00 1.2193 9.2327 7.2220 1.2193 9.2327 7.2220

3.00 -1.50 1.2193 1.7475 7.2220 1.2193 71.735 28.003
-3.00 1.2193 4.4899 7.2220 1.2193 11.313 10.363

This table displays the RMSFE as de�ned in (8) for Experiment 2b, whose data generating process and results are described
in Section 4.1 and in Section 4.2, respectively.
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